DIASTEREOMERIC ASSOCIATION COMPLEXES OF CHIRAL BUTADIENES 1)

Albrecht Mannschreck⁺, Violet Jonas, Hans-Otto Bödecker, Hans-Ludwig Elbe, and Gert Köbrich

Fachbereich Chemie, Universität, D-84 Regensburg (A.M., V.J.); Institut für Organische Chemie, Technische Universität, D-3 Hannover, Germany

(Received in UK 1 April 1974; accepted for publication 8 May 1974)

Certain 1,3-butadienes, mainly hexasubstituted ones, prefer non-planar conformations. If diastereotopic groups are present, their 1 H nmr signals may be used $4,5$) to demonstrate molecular chirality and to determine the rate of partial rotation about the c^2-c^3 single bond via a planar s-trans transition state. A second, independent method for the investigation of such butadienes is given in this communication.

(S)- $\frac{1}{2}$: R = CMe¹Me²OH $(S)-3: R = H$

Enantiomers may show different nmr spectra in the presence of an optically active auxiliary compound $^{6)}$. In a number of cases $^{2,7)}$, different spectra have been detected for interconvertible enantiomers. Since a sufficiently strong association between an enantiomer and the additive is a prerequisite for these phenomena, we chose hydroxymethyl derivatives 1 and 2 as substrates and (+)-tris(3-heptafluorobltyryl-D-camphorato)europium(III), $(-)$ - $\frac{1}{4}$, as an auxiliary compound 8).

 $\frac{1}{2}$ and $\frac{2}{3}$ were synthesized from butadienes of know configurations at the double bonds using methods which did not affect the stereochemistry. $\frac{1}{k}$,

mp 134-135^o, was obtained from dimethyl (E,E)-2,3-dibenzylidene succinate³⁾ and excess MeLi in ether at -10° . $\frac{2}{5}$, n_{D}^{20} = 1.5205, resulted from $\frac{1}{2}$ by treatment with n-BuLi and subsequently with acetone in a Trapp mixture at -110°. $\frac{3}{2}$, bp₁₂ 113°, n_p = 1.5202, was obtained from (E,E)-l-methoxycarbonyl-1,2,3,4-tetrachlorbutadiene ⁹⁾ by reduction with i-Bu₂AlH and etherification of the resulting alcohol, bp_{12} 120-122^o, $n_{p}^{20^2}$ = 1.5503, with CH_2N_2/BF_3 10).

A solution of 0.72 mol-% $\frac{1}{4}$ in CCl₄ shows diastereotopic methyl groups at $\delta = 1.07 \, (\text{Me}^1)$ and 1.54 (Me²) and the alkene protons at 6.77 (34⁰). Stepwise addition of $\frac{4}{5}$ to this solution shifts and splits these signals $(6 = 5.09$ and 5.13, Me¹; 4.44 and 4.61, Me²; 10.99 and 11.24, =CH; 0.56 $mol-8$ (+)- 4). These splittings are due to the diastereomeric association complexes $(R)-1 \cdots (+)-4$ and $(S)-1 \cdots (+)-4$; they demonstrate the chirality of 1 .

1 does not show different chemical shifts for the diastereotopic methyl groups Me⁺ and Me⁻ in CCl₄ or C₄Cl₆, whereas in some cases, the 6-values of H $^{\circ}$ and H $^{\prime\prime}$ differ slightly (table). Addition of (+)- $\frac{4}{2}$ shifts and splits some of the signals, depending upon solvent and temperature. The $\text{CH}^{A} _{\text{H}}{}^{B}$ absorptions were assignable to diastereotopic protons within one enantiomer, i.e. AB systems, and to two different CH_2 groups, corresponding to the (R) and (S) enantiomers of $\underline{2}$. In the case of the Me¹ and Me² signals, such assignments in the table are arbitrary; however, the appearance of up to four methyl signals signifies unequal shifts for the diastereotopic methyl groups within a given enantiomer. Addition of r_{accept} 4^{11} instead of $(+)$ -4, results in the complete absence of all of the splittings at +34^O and -12° , i.e. the three CH absorptions represent clean singlets (60 MHz), the pseudocontact shifts of which were very similar to the ones generated by $(+)$ - $\frac{4}{2}$. Thus the splittings must be entirely due to the $chirality$ of the optically active auxiliary compound ¹²⁾, i.e. different pseudocontact shifts of the diastereotopic groups $^{13)}$ do not contribute.

All of the splittings in the spectrum of (RS)-2 in C4C16 in the **presence** of (+)- 4 at +34 $^{\circ}$ (table) are clearly discernible up to +61°. This finding puts a lower limit of 21 kcal/mol to ΔG_c^{\dagger} for enantiomerization 14 which may be compared very roughly with ΔG_c^{\dagger} = 12.8 \pm 0.3 kcal/mol (-20 $^{\circ}$), obtained from the CH^AH^B protons of (RS) -1 in acetone-d₆ in the absence of an auxiliary compound. The difference **of** approximately 8 kcal/mol between the two values indicates huge buttressing effects $4)$ by the CMe¹Me²OH group. These effects increase the repulsive non-bonding interactions in the planar s-trans transition state of c^2-c^3 rotation. We shall take advantage of this finding in our attempts to resolve the enantiomers.

a) $^{2} J_{AB} = 13.0$ Hz

b) For assignments see text.

Thus in the presence of an optically active auxiliary compound, the demonstration of the chirality of non-planar butadienes as well as the determination of their enantiomerization barriers can be achieved without the prerequisite of diastereotopic groups in the molecule.

- 1) Application of NMR Spectroscopy of Chiral Association Complexes, Part 3. - Part $\underline{2}$: 2). - Chiral Butadienes, Part $\underline{4}$. - Part $\underline{3}$: 3).
- 2) A.Mannschreck, V.Jonas, and B.Kolb, Angew.Chem. 85, 994 (1973), Angew. Chem., Int.Ed. Engl. 12, 909 (1973), and references cited therein.
- 3) H.-L.Elbe and G.Köbrich, Chem.Ber. 107 (1974), in the press.
- 4) G. Köbrich, A. Mannschreck, R. A. Misra, G. Rissmann, M. Rösner, and W.Zündorf, Chem.Ber. 105, 3794 (1972); G.Köbrich, B.Kolb, A.Mannschreck, and R.A.Misra, Chem.Ber. 106, 1601 (1973).
- 5) Cf. V. Ramamurthy, T.T. Bopp, and R.S.H.Liu, Tetrahedron Lett. 1972, 3915.
- 6) Review: C.Kutal in: R.E.Sievers (ed.), Nuclear Magnetic Resonance Shift Reagents, Academic Press, New York 1973, p.87.
- 7) D.Houalla, M.Sanchez, and R.Wolf, Org.Magn.Resonance 5, 451 (1973); R.M.Acheson and I.A.Selby, J.C.S.Chem.Commun. 1973, 537; C.S.C.Yang and R.S.H.Liu, Tetrahedron Lett. 1973, 4811; W.H.Pirkle and R.L.Muntz, Urbana (Illinois), personal communication on hydroxylamine derivatives.
- 8) (+)- $\frac{4}{5}$ was used as obtained from commercial sources. $\left[\alpha\right]_0^{2.5}$ = +151⁰ $(c = 1.27, CC1_A)$. The spectra obtained at +34⁰ using $(+)$ -4 as an auxiliary compound showed an additional peak between $\delta = 4.5$ and 5.2 which seems to be due to H_2O ; integration indicates about 4 mol H_2O per mol $(+)-4$.
- 9) G.Köbrich and H.Büttner, Tetrahedron <u>25</u>, 883 (1969).
- IO) Cf. H.-O.BGdecker, Diploma Thesis, Techn.Universitat Hannover, 1973.
- 11) (±)-4 was prepared according to the method given by V.Schurig, Inorg. Chem. 11, 736 (1972) and Tetrahedron Lett. 1972, 3297, for a similar complex. However since barium bis(3-heptafluorobutyryl-DL-camphorate), mp 230-235⁰, is soluble in ether, the procedure had to be modified. (\pm)- $\frac{4}{2}$, dried in vacuum over P₂O₅, possesses a similar shifting ability as that of a well dried sample of $(+)-4$. The 1 H nmr spectra, including the water peak areas, of $(+)-4$ and $(+)-4$ resemble each other.
- 12) Splittings due to different environments within diastereomeric association complexes disappear in the presence of racemic auxiliary compounds because of rapid dissociation and re-association of these complexes: T.G.Burlingame and W.H.Pirkle, J.Amer.Chem.Soc. 8&, 4294 (1966).
- 13) In suitable cases, diastereotopic groups in open-chain molecules show highly different pseudocontact shifts $2,6$).
- 14) The measurement of rates of internal rotation due to the presence of optically active auxiliary compounds has been described $^{\text{2)}}$. Such measurements in the presence of achiral europium complexes are also known: S.R.Tanny, M.Pickering, and C.S.Springer, Jr., J.Amer.Chem.Soc. 95, 6227 (1973), and references cited therein: H.Kessler and M-Molter, Angew.Chem. 85, 1059 (1973); Angew.Chem., Int.Ed. Engl. 12 , 1011 (1973).

Financial support by Deutsche Forschungsgemeinschaft and Fonds der Chemischen Industrie is gratefully acknowledged.